--[[ | This file was obtained through the combined efforts | of Madbluntz & Plymouth Antiquarian Society. | | Credits: lifestorm, Gregory Wayne Rossel JR., | Maloy, DrPepper10 @ RIP, Atle! | | Visit for more: https://plymouth.thetwilightzone.ru/ --]] --[[ Implemented as described here: http://flafla2.github.io/2014/08/09/perlinnoise.html Copied from: https://gist.github.com/SilentSpike/25758d37f8e3872e1636d90ad41fe2ed ]]-- local floor,band,clamp,max = math.floor,bit.band,math.Clamp,math.max perlin = {} local p = {} -- Hash lookup table as defined by Ken Perlin -- This is a randomly arranged array of all numbers from 0-255 inclusive local permutation = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 } -- p is used to hash unit cube coordinates to [0, 255] for i = 0,255 do -- Convert to 0 based index table p[i] = permutation[i + 1] -- Repeat the array to avoid buffer overflow in hash function p[i + 256] = permutation[i + 1] end -- Functions local dot_product = { [0x0] = function(x,y,z) return x + y end, [0x1] = function(x,y,z) return -x + y end, [0x2] = function(x,y,z) return x - y end, [0x3] = function(x,y,z) return -x - y end, [0x4] = function(x,y,z) return x + z end, [0x5] = function(x,y,z) return -x + z end, [0x6] = function(x,y,z) return x - z end, [0x7] = function(x,y,z) return -x - z end, [0x8] = function(x,y,z) return y + z end, [0x9] = function(x,y,z) return -y + z end, [0xA] = function(x,y,z) return y - z end, [0xB] = function(x,y,z) return -y - z end, [0xC] = function(x,y,z) return y + x end, [0xD] = function(x,y,z) return -y + z end, [0xE] = function(x,y,z) return y - x end, [0xF] = function(x,y,z) return -y - z end } local function grad(hash, x, y, z) return dot_product[band(hash,0xF)](x,y,z) end local function fade(t) return t * t * t * (t * (t * 6 - 15) + 10) end local function lerp(t, a, b) return a + t * (b - a) end function perlin.noise(x, y, z, zoom) -- [-1 , 1] zoom = zoom or 100 x = x / zoom y = y and y / zoom or 0 z = z and z / zoom or 0 -- Calculate the "unit cube" that the point asked will be located in local xi = floor(x) % 256 local yi = floor(y) % 256 local zi = floor(z) % 256 -- Next we calculate the location (from 0 to 1) in that cube x = x - floor(x) y = y - floor(y) z = z - floor(z) -- We also fade the location to smooth the result local u = fade(x) local v = fade(y) local w = fade(z) -- Hash all 8 unit cube coordinates surrounding input coordinate local A = p[xi ] + yi local AA = p[A ] + zi local AB = p[A + 1 ] + zi local AAA = p[ AA ] local ABA = p[ AB ] local AAB = p[ AA + 1 ] local ABB = p[ AB + 1 ] local B = p[xi + 1] + yi local BA = p[B ] + zi local BB = p[B + 1 ] + zi local BAA = p[ BA ] local BBA = p[ BB ] local BAB = p[ BA + 1 ] local BBB = p[ BB + 1 ] -- Take the weighted average between all 8 unit cube coordinates return lerp(w, lerp(v, lerp(u, grad(AAA,x,y,z), grad(BAA,x-1,y,z) ), lerp(u, grad(ABA,x,y-1,z), grad(BBA,x-1,y-1,z) ) ), lerp(v, lerp(u, grad(AAB,x,y,z-1), grad(BAB,x-1,y,z-1) ), lerp(u, grad(ABB,x,y-1,z-1), grad(BBB,x-1,y-1,z-1) ) ) ) end function perlin.range(x, y ,z, zoom) -- [0 - 1] return (1 + perlinnoise(x, y, z, zoom)) / 2 end function perlin.rangeSub(x, y, z , zoom, n) return max(0,(perlin.range(x, y ,z, zoom) - n ) / (1 - n)) end